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Abstract

Ductile shear zones with di�erent styles are attributed to rocks having deformed as pseudoplastic power law ¯uids with

di�erent exponents n > 1 of the stress sensitivity of the strain rate. Pro®les of velocity and accumulated displacements recorded
by passive markers in pseudoplastic ¯uids ¯owing steadily and continuously along no-slip boundaries have robust geometries
distinctive of the n-value. What have previously been considered as single shear zones are forward modelled as pairs of back-to-

back boundary shears coupled across individual counter¯ow boundaries.
Displacement gradients in natural shear zones are shown to ®t theoretical displacement curves for steady ¯ows of

pseudoplastic ¯uids along no-slip boundaries in a variety of rock types of di�erent age, environment and scale. General ®ts of

these curves indicate that strain was homogeneous along natural counter¯ow boundaries, so that speci®c values or ranges of n-
value can be assigned to the rocks when they sheared whatever deformations and deformation mechanisms were involved. Fits
that are only local indicate inhomogeneous strains along natural boundary shears and require more detailed analysis. # 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

The distortion within ductile shear zones of markers,
old or new, record shear strains that are zero along
sub-parallel margins and increase inward to a near-
central surface from which relative displacement
increases outward to maxima along the margins. Shear
zones along lithological contacts are characteristically
asymmetric but those that cross otherwise uniform
rock masses are closer to symmetric.

The only constant volume strain that can occur in
straight parallel-sided zones between bodies of
unstrained rocks is simple shear (Ramsay and
Graham, 1970; Simpson and De Paor, 1993) which
should also be continuous (Lister and Williams, 1979)
and homogeneous (Jiang and White, 1995). Zones of
steady and continuous simple shear with constant
volume will therefore be considered before some of the
potential complications.

The localisation of shear into particular zones in
rocks has previously been attributed to local softening
by processes that are geometric (Harris and Cobbold,
1984), chemical (Beach, 1985), and structural, mechan-
ical or thermal (Mitra, 1978; Poirier, 1980; Kameyama
et al., 1997) in any combination. However, until now,
there has been no simple paradigm accounting for the
spontaneous localisation of ductile shear into narrow
zones.

This work presents a new conceptual model for
shear zones and how they develop. It develops one of
the simplest of previous theoretical models, that shear
zones are merely ductile faults in power law ¯uids that
strain rate soften (Poirier, 1980). Velocity and displace-
ment gradients of power law ¯uids ¯owing beside a
particular type of no-slip boundary are used to for-
ward model shear zones that look realistic. Natural
shear zones in the ®eld and literature are then shown
to display essentially similar displacement gradients. In
e�ect, the large range of geometries anticipated along
natural shear zones (Jiang and White, 1995) are limited
to a particular set of curves which measure the stress
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sensitivity of the strain rates of adjoining rock masses
when they sheared.

2. The shear spectrum

Whatever their scales, ductile shear zones lie in a
geometric spectrum with wide zones of gentle shear
inconspicuous along the limbs of ¯ow folds at one end
and, at the other end, zones of intense shear so narrow
that they resemble faults (Fig. 1). However, faults are
discontinuities, and the essence of ductile shear zones
is the continuity of shear gradients across them. This
geometric spectrum is generally considered to relate to
a mechanical spectrum expressed in terms of either
penetration of strain or competence, both qualitative
concepts for which a single quantitative alternative will
be suggested here (Fig. 1).

To model and interpret shear zones we need a rheol-
ogy that speci®es shear localising to degrees related to
speci®c variables. Here such a quantitative spectrum is
based on power law ¯uids.

3. Power law ¯uids

Power law ¯uids are those where the shear stress, t,
or the stress di�erence, s (� s1 ÿ s3) and the corre-
sponding steady rates of shear, _g , or longitudinal
strain, _e are related by

t � A_g1=n �1a�

s � A_e1=n �1b�
or

_e � Asn �1c�
(Eq. 1a, Wilkinson, 1960; Eq. 1b and c, Means, 1990).

The constants, A, in Eq. 1(a±c) are not necessarily
equal but are general functions of pressure, tempera-
ture and material parameters (see later); the

.
indicates

the time derivative. The exponent n is the stress sensi-
tivity of the strain rate (Harris, 1977; Means, 1990),

while its reciprocal, 1/n, is the strain rate sensitivity of
the ¯ow stress (Means, 1990).

Newtonian ¯uids deform with n � 1 so that strain
rates have a linear relationship with stress. Where
n 6� 1, the n-value measures the degree of non-
Newtonian behaviour; the greater its departure from
unity, the more non-linear are the properties of the
¯uid. Fluids for which n is below unity, dilatant ¯uids,
are said to strain rate harden. However, the focus here
will be on pseudoplastic ¯uids, for which the n-value is
above unity and which conventionally strain rate
soften. The softening refers to a decrease in apparent
viscosity, the current ratio of stress to strain rate, not
the resistance to shearing (Means, personal communi-
cation, 1999). Fluid mechanics attribute pseudoplasti-
city to increasing rates of shear enhancing the
preferred orientations of asymmetric particles
(Wilkinson, 1960) with shapes that may also increase
in symmetry. The n-value is taken here as a simple
measure of the localisation of shear strain in rocks.

Until the mid 1970s, theoretical geoscientists gener-
ally considered ductile rocks as Newtonian ¯uids that
deform by di�usion. However, by then laboratory
results with rocks deforming by a combination of dis-
location and di�usion mechanisms until creep was
steady under constant stress were usually ®t by power
laws with signi®cant non-linearity, e.g. n � 3±10 (e.g.
Heard, 1968). Laboratory creep rates are over ®ve
orders of magnitude faster than is likely in nature.
Nevertheless, increasing use of power law rheologies
for ductile rocks since Fletcher (1974) has improved
quantitative agreement between theory and natural de-
formation structures (e.g. Smith, 1977; Turcotte and
Schubert, 1982; Tackley, 1998). A general decrease in
n with decreasing strain rate is likely on both math-
ematical and physical grounds (Smith, 1977). Shear
will be shown to concentrate in zones in association
with a particular type of boundary.

3.1. Velocity and displacement gradients beside a no-slip
boundary

Deformation boundaries can allow free-slip, stick-
slip or no-slip; they can also be rigid or ¯exible, etc.
Just as shear in brittle rock masses occurs along dis-
crete new or old free-slip or stick-slip boundaries,
shears in ductile rocks develop along new or old no-
slip boundaries. A start is made by focusing on the
steady ¯ow of power law ¯uids between two planar
no-slip rigid boundaries and then skewing this situ-
ation inside out.

Consider the ¯ow of a power law ¯uid driven by
pressure di�erence DP along a channel of length L and
width, w, between two stationary rigid walls (Turcotte
and Schubert, 1982). The shear stress in the ¯uid
satis®es:

Fig. 1. The shear spectrum.
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dt=dy � ÿDP=L �2�
(Eq. 2, Turcotte and Schubert, 1982, p. 316). For a
power law ¯uid the shear stress and velocity gradient,
or strain rate, are related by

du=dy � Ctn �3�
(Eq. 3, Turcotte and Schubert, 1982, p. 316) where C
is a constant and n a positive integer. Solving Eq. (3)
for t and substituting into Eq. (2) and then integrating
for the above symmetry conditions and then integrat-
ing for no-slip boundary conditions (Turcotte and
Schubert, 1982, p. 318) results in

u � C=�n� 1�fDP=Lgnf�w=2�n�1 ÿ y1�ng �4�
(Eq. 4, Turcotte and Schubert, 1982, p. 318). We can
focus on the velocity beside a single no-slip boundary
by normalising the velocity, u by its maximum, umax

which yields

u=umax � 1ÿ �2y=w�n�1 �5�
(Eq. 5, Bertram Schott, personal communication,
1999). Here y is the co-ordinate perpendicular to the
boundary. The e�ective viscosity of the power law
¯uid is proportional to t 1ÿn (Turcotte and Schubert,
1982, p. 318).

Equation (5) with u/umax normalised to twice y/(w/2)
(Fig. 2) allows comparison between velocity pro®les in
power law ¯uids with di�erent n ¯owing steadily
beside a single planar no-slip boundary.

The ¯ow of a Newtonian ¯uid (n � 1) driven by a
pressure di�erence along a no-slip boundary is pen-
etrative but not uniform and its parabolic velocity pro-
®le simulates part of a ¯ow fold (Fig. 1). The velocity
and displacement pro®les of pseudoplastic ¯uids
(n > 1) depend upon their n-value (Fig. 2). This is so
even though the shear stresses for all n-values share
the same linear gradient. As the n-value of the ¯uid
increases, the velocity pro®le develops a shoulder with

a radius of curvature that decreases as it migrates
toward the no-slip boundary (Fig. 2). Further, the vel-
ocity gradients steepen and increasingly localise to the
no-slip boundary so that the boundary e�ect reaches
smaller distances into what is increasingly `plug ¯ow'.
As n exceeds 129, boundary shears resemble faults.
Velocity pro®les for pseudoplastic ¯uids (Fig. 2) are
also ®nite displacement pro®les of appropriate markers
at particular times, such as after ¯ow has ceased.

Each of the velocity or displacement pro®les in Fig.
2 remains distinctive of the n-value whatever the maxi-
mum velocity, displacement or width. This is because
the e�ective viscosity in pseudoplastic ¯uids is lowest
where the shear stress is highest, along the no-slip
boundary, and highest where the shear stress is lowest,
beyond the retarding e�ect of the no-slip boundary.

3.2. Markers in boundary shears

Fig. 3 shows three types of passive markers distorted
in a boundary shear. Distortion induced by traction
along the boundary shear's rigid basal no-slip bound-
ary (thickened) penetrates the ¯uid as far as its upper
margin (thin continuous line) beyond which the mar-
kers retain their initial con®gurations. Each in their
own way show that shear strains increase to a maxi-
mum along the no-slip boundary while displacements
increase away from it to a maximum maintained
throughout the ¯uid mass beyond the margin.

Continuous thin lines initially perpendicular to the
shear (Fig. 3) map velocity gradients and accumulated
displacement gradients across the boundary shear in a
pseudoplastic ¯uid ¯owing with n � 3 after an arbi-
trary time (as repetitions of the n � 3 curve from Fig.
2). A nominally random (isotropic) fabric has devel-
oped a new, shear-induced fabric within the boundary
shear. Each component of the fabric rotates passively
so that the preferred fabric orientation parallels the
long axis of the strain ellipse and intensi®es as it
rotates toward the no-slip boundary. Particle move-
ment paths (dashed) map stream lines that parallel the
direction of simple shear with spacings that narrow

Fig. 2. Non-dimensional pro®les of velocity, u/umax, plotted against

distance, y/(w/2) from a no-slip boundary for steady ¯ow of pseudo-

plastic ¯uids. Strain rate sensitivities are given by n-values on curves

(from Eq. 5).

Fig. 3. Distortion of markers in a pseudoplastic ¯uid (n � 3) due to

the velocity gradient imparted by steady ¯ow being retarded along a

rigid no-slip boundary (thickened base) up to the nominal margin

(thin continuous line) of a boundary shear.
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toward the no-slip boundary. Because the stream lines
are parallel, ¯ow in the boundary shear has been
homogeneous and steady. Had passive marker lines in-
itially paralleled the no-slip boundary, they would
have remained straight and retained their initial
lengths and spacings. Shear bands (not shown) could
have developed in various orientations (Jiang and
White, 1995).

Most geologists probably consider Fig. 3 as showing
only half a shear zone but here we follow ¯uid mech-
anics and treat it as a single boundary shear.

3.3. Kinematics and reference frames

It is not necessary for the material beneath the no-
slip boundaries in Fig. 3 to be rigid. Visualise another
body of ¯uid with similar markers beneath the no-slip
boundary in Fig. 3, one that is identical to that above
and ¯owing in the same direction at a di�erent rate.

What would happen to passive markers on either side
of the single mutual no-slip boundary?

An analogous situation is a vertical shear zone
developing in a continent in which an embayment
(behind still-subducting ocean ¯oor) is shearing past
an already sutured promontory (Fig. 4a). The shear
zone records the relative di�erence between the rates
of motion of the promontory and embayment. Both
the promontory and embayment are travelling in the
same direction in a Lagrangian reference frame ®xed
to the continent on the non-subducting plate (Fig. 4a).
However, relative to each other, and in an Euler refer-
ence frame ®xed to the central plane of the zone, they
are ¯owing in opposite directions (Fig. 4b). Ramsay
and Graham (1970) began by ®xing their reference
frame to the central plane (Fig. 4b) but, without expla-
nation, ended using the reference frame shown in Fig.
4(c). Most subsequent workers have used this frame
(Fig. 4c) ®xed in one of two passive (Mitra, 1978) or
unstrained `walls' (Ramsay, 1980). The adjectives pas-
sive or unstrained are entirely appropriate for bodies
of ¯uids ¯owing at di�erent rates beyond their mutual
boundary shears but, applied to walls, tend to lead to

Fig. 4. Reference frames for deformation zones. (a) Frame ®xed in

non-subducting continent with an embayment in another continent

shearing past a promontory on a subducting plate converging in the

same direction at di�erent rates. (b) Frame ®xed to the mutual no-

slip boundary between two boundary shears. (c) Frame ®xed on one

margin. Frames (b) and (c) are practical but do not show the bound-

ary conditions responsible for shear zones in initially uniform rocks.

Fig. 5. (a) Counter¯ow boundary shears in pseudoplastics of di�er-

ent n-value are asymmetric in both width and displacement. (b)

Counter¯ow shears in masses of identical pseudoplastics that tra-

velled in the same direction at rates that di�ered by a factor of 2 are

symmetric. (c) Boundary shears in identical pseudoplastics that tra-

velled in the same direction at rates di�ering by any factor other

than 2 are asymmetric in displacement but not necessarily width.
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the unnecessary concept that the two ¯uids are rigid in
ways other than mathematical.

The Eulerian reference frames in Fig. 4(b) and (c)
are practical for ®eld geologists but neither relate dis-
placements or shear strains to any external boundaries
that may have retarded one ¯uid mass more than the
other (as is obvious in Fig. 4a).

The frame in Fig. 4(c) illustrates that displacements
on both sides of a shear zone (and therefore the vel-
ocities during deformation) may share the same direc-
tion and sense of shear. Its general use accounts for
why geologists habitually refer to structures like those
in each box of Fig. 5 as single left-handed ductile
shear zones.

3.4. Counter¯ow boundaries

Considering shear zones as single structures misses
the fact that the bodies on either side have moved in
opposing relative directions along a particular plane.
No relative displacement has occurred at that plane
and the shear strains are largest in both boundary
shears at that same plane which can therefore be trea-
ted as a mutual no-slip boundary. The reference frame
in Fig. 4(b) is therefore used here to illustrate that
what have previously been thought of as an individual
shear zone might be more usefully considered as pairs
of boundary shears back-to-back across common no-
slip boundaries. Treating `individual shear zones' as
coupled pairs of boundary shears allows a direct
inverse linkage between displacements and shear
strains. Coupled boundary shears can di�er in sym-
metry (width and/or maximum displacement) so the
shared no-slip boundary is the central plane only
between symmetrical boundary shears.

A no-slip boundary between two ¯uid masses ¯ow-
ing in relatively opposed directions is a special cat-
egory of boundary, referred to here as a counter¯ow
boundary. Shear strains on either side of the counter-
¯ow boundary concentrate in each of the boundary
shears to degrees that depend on the n-values of the
counter¯owing ¯uids.

Gradients in ¯ow velocity localise in space or time
along two types of counter¯ow boundaries: those
along lithological boundaries and those that develop
across initially uniform rocks.

Because the strain rates on either side of lithological
boundaries are intrinsically di�erent, the maximum
displacement and/or widths of the two coupled bound-
ary shears are necessarily asymmetric (Fig. 5a). It has
been shown that shears along such strain-active
boundaries can remain neither steady (Lister and
Williams, 1979) nor simple (Jiang, 1994). Such compli-
cations can lead to the basic shear instability that gen-
erates lobes in the rock with higher viscosity and cusps
in the rock with lower viscosity (Ramsay, 1967). The

sense of shear reverses at every cusp and lobe. If
boundary shears along two lithological boundaries are

su�ciently wide to interact, their mutual interference

can result in either buckles (or ¯ow boudins) along
shortened (or extended) single layers of relatively high

e�ective viscosity. Alternatively, interference can result
in fold mullions (or inverse pinches) along shortened

(or extended) single layers of relatively low e�ective

viscosity (Talbot, 1999). In practice, most lithological
boundaries are su�ciently widely spaced that the shear

along them is so inconspicuous that it can be neglected
in discussions of cleavage and strain refraction (e.g.

Treagus and Sokoutis, 1992); this is because the
boundary shears are overshadowed by the more spec-

tacular deformation structures that develop along their

intervening counter¯ow boundary.

The concept of counter¯ows along lithological

boundaries and across uniform rocks is con®ned to the
reference frame in Fig. 4(b) which shows the counter-

¯ow but not the absolute direction of ¯ow. However,
the material inhomogeneity responsible for counter¯ow

along lithological contacts is visible within that refer-
ence frame, whereas the boundary condition respon-

sible for counter¯ow in uniform rocks is not (as it is in

Fig. 4a).

Just as shear failure in uniform rocks deforming as

brittle solids can result in spontaneous new planar slip
boundaries called fractures, so shear failure in uniform

rocks deforming as pseudoplastic ¯uids can result in
spontaneous new planar no-slip boundaries called

counter¯ow boundaries. As we refer to individual
faults, so can we refer to individual counter¯ow

boundaries.

What have previously been described as individual

symmetric shear zones in uniform rock (Fig. 5b) are
here considered as coupled pairs of boundary shears.

The geometries of these boundary shears can be identi-

cal but with mirror symmetry screwed about their
mutual no-slip counter¯ow boundary so that their

senses of shear remain constant. (Bundles of displace-
ment curves are symmetric about a point on the coun-

ter¯ow boundary.) Such point symmetry derives from

two bodies of rocks deforming as identical power law
¯uids having travelled in the same direction at bulk

rates that di�ered by a factor of 2 because of bound-
ary conditions not seen in Fig. 5(b). Boundary shears

in uniform rocks ¯owing in the same direction at rates

that di�er by any factor other than 2 will be asym-
metric by di�ering in maximum displacement but not

necessarily width (Fig. 5c).

Not all boundary shears coupled across lithological

boundaries distort to lobes or cusps (Fig. 5a).
Similarly, most counter¯ow boundaries in uniform

rocks remain straight in the frame of Fig. 4(b) whether
or not they spin in a wider reference frame (Fig. 4a).
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4. Forward modelling of counter¯ow

Figure 6 shows pro®les of forward physical models
of symmetric coupled counter¯ow boundary shears in
uniform rocks deforming as pseudoplastic ¯uids with
the stress sensitivity of the strain rate (given by n )
increasing in arbitrary steps in successive boxes down-
ward. As in all previous ®gures, these boundary shears

were modelled graphically using repetitions of one or
other of the curves in Fig. 2 which is based on Eq. (5).
Contours of cumulative displacement and strain (not
shown) are parallel (combed, or raked, cf. Lisle, 1992)
in each block because the ¯ows in both adjoining
streams are (or were) homogeneous. Blackened stripes
across each block emphasise that displacements are
identical across each counter¯ow boundary (Fig. 6).
The coupled boundary shears narrow and the strain
gradients steepen systematically as the shear increas-
ingly localises through the geometric and quanti®ed
mechanical spectrum. Boundary shear widths in each
box of Fig. 6 remain constant, not just because displa-
cements parallel the counter¯ow boundaries, but
because n was also constant along their lengths.

4.1. Coupled boundary shears in pseudoplastic ¯uids
with constant n

Whether natural coupled boundary shears change in
width with time is not a simple matter (e.g. Means,
1984, 1995). However, spatial variations in width are
most likely at their ends. Consider two adjoining
streams of a uniform rock that begin to di�er in vel-
ocity at one end of a counter¯ow boundary and
resume equal velocities at the other end. The ends of
such counter¯ow boundaries cannot involve simple
shear alone because ¯ow must accelerate on one side
at one end and slow on the other side at the other end
while maintaining material continuity (Fig. 7). Where
markers at a high angle to the counter¯ow boundary
change in spacing, other markers, parallel to the coun-
ter¯ow boundary (not shown), must change in length.
Because of this direct linkage between changes in vel-
ocity and geometry, spatial changes in width at the

Fig. 6. Forward models of symmetric counter¯ow boundary shears

in ¯uids with constant but di�erent n-value (labelled). Counter¯ow

boundaries are ticked at the end of each box.

Fig. 7. As displacement accumulates, boundary shears in a pseudo-

plastic with n � 3 (with dashed margins) of (a) Type III maintain

constant width, (b) Type I widen between converging ends and (c)

Type II narrow between diverging ends.
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ends of countershears can be taken as proxies for
changes of width in time, and spatial gradients along
the stream lines as proxies for gradients in time.

If the counter¯ow is perpendicular to initially paral-
lel straight marker lines, the relative acceleration and
slowing at one end must match the relative slowing
and acceleration at the other end (Fig. 7). The end
geometries need only match (with screwed mirror sym-
metry) if the counter¯ow boundary has remained
straight across straight marker lines.

The maximum displacement shown in Fig. 2 is
entirely arbitrary. Changing the maximum displace-
ment preserves the essential di�erences in displacement
gradients along boundary shears with constant n-value
so long as Eq. (5) is satis®ed. The ends of coupled
boundary shears in rocks with constant n-value can
therefore be modelled by systematically changing the
displacement and corresponding width in Eq. (5) while
keeping n constant (Fig. 7). The shear strain gradients
and marginal displacements decrease systematically on
one side as they increase on the other; the reverse hap-
pens at the other end. It is therefore possible to model
counter¯ow boundaries in which the width of both
boundary shears remain constant (Fig. 7a), widen (Fig.
7b) or narrow (Fig. 7c) in space (and therefore past
time) even though their ends cannot involve simple
shear of constant volume in rocks of constant n. The
changes in spacing between markers initially perpen-

dicular to the counter¯ow boundary near its ends are
idealised in Fig. 7 and may involve strain gradients
that are unnaturally steep. Nevertheless, they illustrate
the concept that the margins of counter¯ow bound-
aries can remain constant, or either widen or narrow
in space and time. Means (1984) labelled ductile shears
that widen with time as Type I zones and those that
narrow with time as Type II; Fig. 7 illustrates that
there may also be Type III that maintain constant
width with time.

4.2. Coupled boundary shears in power law ¯uids with
variable n

Careful inspection of the curves in Fig. 2 reveals
that there is only a limited range where separate curves
for velocity or displacement in Fig. 2 can pass
smoothly (tangentially) from one to another (Fig. 8a).
This suggests that displacement curves can increase
smoothly and continuously inward toward counter¯ow
boundaries in pseudoplastics with a limited range of n-
values, within n � 1 to 115, (symmetrically in Fig.
8b). Such increasing localisation of deformation on the
same counter¯ow boundary is likely in Type II ductile
shears that narrow as n increases with time.

There are no equivalent smooth displacement curves
for n-values decreasing inward toward the counter¯ow
boundary over a signi®cant range of n-values. Figure
8(c) is one of the smoothest curves I have managed
empirically. Shear zones in which n has decreased
during counter¯ow are likely to widen as Type I
zones. The probable results are compound shear zones
(Grocott and Watterson, 1980) characterised by irregu-
lar strain gradients and displacement pro®les that do
not ®t the curves in either Figs. 2±8(a) (Fig. 8c).
Possible natural examples have been illustrated by
Mitra (1978, plate 1) and Segall and Simpson (1986,
®gs. 1 and 7).

5. Comparison with natural shear zones

Forward models of counter¯ow boundaries based
on changing the n-value in Eq. (5) or Fig. 2 (see also
Figs. 5±8) appear to successfully simulate the shear
spectrum (as represented in Fig. 1). But is this
approach relevant to rocks and does it have physical
meaning?

To answer these questions, the displacement curves
in Fig. 2 (from Eq. 5) will be compared with those in
natural shear zones. The ®rst step in such comparison
is to identify on an appropriate outcrop, photograph,
map or natural scale pro®le, etc., pro®les that are
close to parallel with the displacement directions
along natural counter¯ow boundaries. The next is to
mark on such a pro®le the apparent outer margins of

Fig. 8. (a) Displacement pro®les across boundary shears in which n

was rising with time can only be smooth where they pass one to

another tangentially inward to the counter¯ow boundary. (b)

Repetitions of part of this unique tangential curve model a counter-

¯ow boundary in which n increased from n= 1 to n= 9 with time.

(c) Decreasing n-values in time leads to compound boundary shears

with complex displacement pro®les (here n = 15 to n= 1).
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Fig. 9. Suitably scaled and distorted where necessary, one or other of the curves on Figs. 2 or 8(a) match a surprisingly high proportion of geo-

logical shears on a variety of scales (see text). (a) Crenulation cleavage in a slaty siltstone from the Moselelmunde (from Weijermars, 1986, ®g.

4c). (b) A new foliation along a counter¯ow boundary in an almost isotropic gabbro at Vochalambina, Kola peninsula. (c) An older foliation dis-

torted in granitoid gneisses at Cristallina, Swiss Alps (from Ramsay and Huber, 1983, ®g. 3.18). (d) An asymmetric Nagssuqtoqidian counter¯ow

boundary in Archaean migmatites near Holsteinsborg, W Greenland.
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the boundary shears (where markers ®rst depart from
regional patterns) and the intervening counter¯ow

boundary (which lies along the plane of greatest
shear and zero relative displacement of strain mar-
kers). The non-dimensional curves of Figs. 2 or 8(a)
are then scaled to the widths of each natural bound-

ary shear and overlain on the pro®le to seek a ®t. If
the markers were not initially perpendicular to the

counter¯ow boundary, or the displacement not twice
the width of the boundary shear (as in Fig. 2), ®ts
can be sought by applying Eq. (5) to markers with
appropriate initial orientations and displacement, or

Fig. 10. (a) Late Hercynian symmetric counter¯ow boundary in sandstones at Roces Point near Cork, Ireland (from Trayner and Cooper, 1984).

(b) Upper map: GLORIA image of part of the East Paci®c rise (from Searle, 1983) located in lower map. (c) Aeromagnetic relief anomaly map

of part of central Sweden. North is up the page in (b and c).
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by graphically distorting one or both the appropriate
axes of Figs. 2 or 8(a) (natural examples are shown
in Figs. 9±12).

A transparent montage of photocopies of Figs. 2
and 8(a) on a range of scales has been used in the
®eld and literature (cited later) with considerable
success to seek parts of boundary shears with
appropriate markers and displacements. Figs. 9±12
illustrate analyses of counter¯ow boundaries in a wide

variety of rock types, tectonic environments and types
of image over a large range of scales. Every image
analysed is assumed to be close to perpendicular to
the counter¯ow boundary and parallel to past
displacement trajectories along it. The examples of
natural counter¯ow boundaries shown in Figs. 9 and
10 are arranged to ®t the pages but will be dis-
cussed in general order of increasing scale and
complexity.

Fig. 11. (a) SW±NE pro®le across where the San Juan Basin abuts against the San Juan volcanic uplift in Colorado (from Law, 1992). (b)

Aplites a, b and c distorted along a shear zone nucleated on a quartz vein (clear) in a granodiorite (dotted), Sierra Nevada, California (from

Segall and Simpson, 1986, ®g. 3). (c) The Alpine fault in New Zealand (from Weijermars, 1987, ®g. 10).
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5.1. Results

Fig. 9(a) is a microphotograph of a crenulation clea-
vage distorting the ®rst foliation in a slaty siltstone in
the Moselelmunde of Germany (from Weijermars,
1986, ®g. 4C). Fig. 2 has been repeated with screwed
mirror symmetry about a single mutual no-slip coun-
ter¯ow boundary and shrunk and rotated to seek a
geometric ®t with the curvature of the crenulated foli-
ation (right hand side of Fig. 9a). Only the (thickened)

curves for n � 3 ®t the curvature of the foliation
clearly over most of the microphotograph. Two back-
to-back n � 3 curves have been repeated alone to
emphasise the generality of this ®t (middle of Fig. 9a).
Whatever deformations (volume changes, zone parallel
extension, etc.) and whatever deformation mechanisms
(crystal plasticity or solution, etc.) were involved, there
is an empirical ®t between this crenulation and a par-
ticular theoretical displacement gradient in boundary
shears along unequally spaced counter¯ow boundaries.

Fig. 12. (a) Counter¯ow boundaries (long dashes) with margins and ends (short dashes) in tonalitic Archaean gneisses, Kola peninsula, Russia.

(b) Ultrama®c rocks along the contact between the Seve and Koli nappes near HandoÈ l, Scandinavian Caledonides (from Bergman and SjoÈ stroÈ m,

1997, ®g 5c). (c) Another counter¯ow boundary in the same gabbro at Vochalambina, Russia as illustrated in Fig. 9(b).
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Fig. 9(c) (from Ramsay and Huber, 1983, ®g. 3.18)
shows a counter¯ow boundary distorting an old foli-
ation over widths of decimetres in granitoid gneisses at
Cristallina in the Swiss Alps. Two superimposed back-
to-back versions of Fig. 2 (necessarily o�set) show that
only the n � 5 curves ®t the displacement gradients in
two coupled boundary shears that are almost sym-
metrical in width and displacement. This counter¯ow
boundary is thus attributed to adjoining masses of
identical rock having ¯owed with constant n � 5 at
velocities that di�ered on either side of the shared
counter¯ow boundary by a factor close to 2 in a refer-
ence frame larger than shown.

The foliations distorted in Figs. 9(a) and (c) pre-
dated counter¯ow. The foliation in Fig. 9(b) was gen-
erated by the counter¯ow (cf. Fig. 3). Fig. 9(b) is a
photograph by the author of part of a counter¯ow
boundary a few metres long with a width of centi-
metres in the almost isotropic core of a 200� > 500 m

pod of gabbro exposed in Lopian supracrustal rocks
(2.8±2.7 Ga) inside a greenstone belt within 300 m of
the Bellomorian (3.15±2.9 Ga) granulite±gneiss terrain
at Vochalambina in the Kola peninsula of Russia
(Alekseev et al., 1993). This counter¯ow boundary
probably developed in amphibolite metamorphic facies
during the 2.5±1.8 Ga Karelian orogeny. The same
doubled and partial versions of Fig. 2 as used in Fig.
9(a) have been rotated, scaled and superimposed to ®t
the new shear foliation. The unambiguous ®t of the
n � 3 displacement curve to the curvature of the foli-
ation along two symmetrical boundary shears coupled
across the counter¯ow boundary suggests that shear
occurred with constant n � 3.

Fig. 9(d) shows another decimetre-scale counter¯ow
boundary, one of Nagsuggtoqidian age distorting an
older (Archaean) migmatite near Holsteinsborg in west
Greenland. This di�ers from previous examples in that
the sheared rock mass consists of multiple layers of
di�erent composition (and that the photograph is com-
plicated by relief). Equation (5) and Fig. 2 refer to uni-
form materials but, on the basis that thin multilayers
might exhibit a single bulk shear gradient, the maxi-
mum displacement on Fig. 2 was scaled to seek a ®t
for part of one boundary shear (Fig. 9d). The displace-
ment gradient of the migmatitic layering was found
empirically to ®t only the n � 5 curve despite any
strain activity of the layers. However, that this ®t is
only local, implies that strains along this boundary
shear were not homogeneous (see later).

Fig. 10(a) (from Trayner and Cooper, 1984, ®g. 3)
illustrates the localised distortion of a crude cleavage
developed axial planar to the Church Bay Anticline of
Hercynian age in its northern limb at Roces Point near
Cork in Ireland. Contours of displacement and shear
strain parallel bedding and can be attributed to sym-
metric counter¯ow between two sandstones late in the

folding. The width axes of the curves in Fig. 2 have
been rotated by 468, and the displacement scaled to
match the distortion of the cleavage (Fig. 10a). The ®t
of the n � 1:9 displacement curve to both boundary
shears (each about 1 dm wide) is inferred to constrain
the constant stress sensitivity of the strain rate when
the sandstones sheared during Hercynian folding.

The natural boundary shears analysed above have
widths of decimetres or less, those shown in the two
maps of Fig. 10(b) are considerably larger. The lower
map locates the upper map which is an image pro-
duced by the long-range sidescan sonar GLORIA.
This shows sigmoidal displacement patterns along the
Quebrada Fracture zone (3.58S) in the fast-spreading
East Paci®c Rise (from Searle, 1983). Narrow linear
re¯ections are probably from fault scarps, broader
re¯ections from linear volcanic ridges or the backs of
tilted fault blocks. Searle interpreted this image in
terms of four rapidly slipping transform faults o�set-
ting closely spaced scarps of normal faults formed
near the spreading axes (heavy line in lower map).
``Such curvature is found universally near fracture
zones although the degree of curvature and its spatial
extent may vary somewhat'' (Searle, 1983, p. 608).
Suitably scaled, rotated and distorted versions of
curves from Fig. 2 are superimposed to support the
alternative interpretation o�ered here: that the image
shows coupled counter¯ow boundary shears with dis-
placement gradients that ®t the n � 5 curve at least
locally (see later). This alternative interpretation
ignores any counterslip (additional to the counter¯ow)
but raises the possibility that ocean ¯oor near trans-
forms is not always brittle but can deform as a pseu-
doplastic ¯uid at some stage (see later).

Fig. 10(c) is an aeromagnetic relief anomaly map
(by courtesy of the Swedish Geological Survey) of part
of the StorsjoÈ n±Edsbyn deformation zone in granitoid
basement of Sveccofennian age (1.85±1.70 Ga) in cen-
tral Sweden (Bergman and SjoÈ stroÈ m, 1994). As in Fig.
9(d), the markers distorted in this strike-¯ow boundary
shear vary in lithology but here on scales of tens of
kilometres. Like many shear zones exposed in old
basement rocks, this example reactivated several times
in di�erent P±T conditions both below and above the
ductile±brittle transition. The nearly N±S-trending
magnetic lows in Fig. 10(c) are later faults (<1.6 Ga)
but do not a�ect the unique local match of n11:9
curves from Fig. 2. The aeromagnetic relief anomalies
are attributed to the preservation of a pattern imposed
when bulk shear occurred at upper amphibolite facies.

Fig. 11(c) shows a map of the Alpine fault in New
Zealand (from Weijermars, 1987, ®g. 10), a continental
shear on an even larger scale than that in Fig. 10(c).
Only the n � 3 curve of a suitably distorted version of
Fig. 2 ®ts the curvature of a marker band outside and
inside the western boundary shear for hundreds of
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kilometres. A `drag fold' along the Alpine fault can be
interpreted as having the displacement pattern of an
asymmetric counter¯ow boundary on the scale of the
continental lithosphere that sheared with n � 3. Like
the other examples on smaller scales (Figs. 10b and c),
counterslip assumed to post-date the counter¯ow is
ignored here. The sur®cial rocks are obviously brittle
and fractured but the pattern visible on the scale of
Fig. 11(c) is either inherited from when the surface
rocks were ductile and shearing with n � 3 at depth,
or transmitted from such rocks through their brittle
carapace. In either case it is the n-value e�ective
during ductile shear that has been measured. All the
natural examples illustrated here preserve the e�ects of
particular episodes of ductile shear even though they
are exposed in rocks that are now presumably brittle.

The contact between the San Juan Basin in New
Mexico and the San Juan volcanic uplift in Colorado
is currently interpreted as a normal fault. However,
the thick curve superimposed on the SW±NE pro®le
(Fig. 11a, after Law, 1992) is the curve for n129
found empirically to ®t the boundary between the
Mancos shale and the Mesaverde sandstones after scal-
ing Fig. 2 to match the strata (shown with a vertical
scale 11.3 times the horizontal scale). This ®t raises the
possibility that these Upper Cretaceous to Eocene
shales and sandstones underwent normal dip-¯ow in a
boundary shear with a width of tens of kilometres
against the ¯anks of the San Juan uplift in Laramide
(early Tertiary) times. The age of contours of thermal
maturity (vitrinite re¯ectance, labelled 0.6±2.0) relative
to the shearing is not clear. A reviewer of an earlier
version of this work suggested that another exponen-
tial law would probably provide a better rheological
approximation to the sediments represented in Fig.
11(a). However, the best ®t possible for the other ex-
ponential curve treated to the same scaling as the
n129 curve is not shown as it is nowhere near as
good as the curve shown for pseudoplasticity and
would obscure the pro®le. Similar ®ts for that other
exponential curve have been attempted for all the
natural examples shown here and the pseudoplastic ®ts
are signi®cantly better in every case.

Fig. 11(b) (from Segall and Simpson, 1986, ®g. 3) il-
lustrates coupled boundary shears decimetres wide in a
granodiorite of the Sierra Nevada of California. Segall
and Simpson (1986) considered that the ductile shear
nucleated on a dilatant fracture ®lled by quartz before
minor o�sets occurred along fractures. Superimposing
the curves of Fig. 2 on aplite (a) in the right hand
boundary shear suggests that n15 and was constant
during the ductile shear.

Fig. 12(a) shows the complete lengths of two parallel
counter¯ow boundaries in tonalitic gneisses of
Archaean age in the Shirokaya area on the Kola
peninsula of Russia. Some of the distorted markers are

overlain by heavy lines after the curves in Fig. 2 were
distorted to match their curvature. This match was
entirely successful for the n � 1 curve but no others
(Fig. 12a). Remembering that the ends of counter¯ow
boundaries cannot involve simple shear alone, it is
intriguing to note that the lower ends of one counter-
¯ow boundary converge whereas the others diverge;
that to the right may have narrowed in time (cf. Fig.
7b) whereas that to the right, which has a neosome
segregation vein along most of its length, may have
widened with time (cf. Fig. 7c). Both the upper ends
can be interpreted as having maintained constant
width as these migmatites sheared as Newtonian ¯uids.

Fig. 12(b) is a photograph of foliated ultrama®c
rocks shredded among ophiolites along the contact
between the Seve and KoÈ li nappes near HandoÈ l in the
Scandinavian Caledonides (from Bergman and
SjoÈ stroÈ m, 1997, ®g. 5B). Two asymmetric extensional
counter¯ow boundaries a�ected the early foliation
over widths of decimetres. Scaling, distortion and ro-
tation of Fig. 2 to seek ®ts between the curvature of
the foliation and the various n-curves (not shown)
found that the n11:9 curve generally matches along
each boundary shear suggesting that these rocks
deformed with a constant stress sensitivity of the strain
rate near 1.9 in late Caledonian times. The two marker
foliae overlain by n11:9 curves to the left in Fig.
12(b) are on either side of a small change in compo-
sition across which the superposed foliation is slightly
oblique. On a close-up photograph (not shown) the
two foliae refract across the counter¯ow boundary and
have angles of 348 and 458 from the perpendicular to
the counter¯ow boundary beyond the margins of the
boundary shears. Applying eq. (4) of Treagus and
Sokoutis (1992) implies a ratio of e�ective viscosities
of 11.3 across the lithological boundary during shear.
Such details probably account for the variable width
of the boundary shears on either side of the counter-
¯ow boundary to the left. Thus both counter¯owing
bodies deformed with n11:9 but the displacement was
greater in the boundary shear deforming with lower
e�ective viscosity.

Fig. 12(c) is the only counter¯ow boundary known
to the author across which markers (a new foliation)
®t a suitably scaled version of the curve in which n-
values increase smoothly toward the counter¯ow
boundary (Fig. 8a). The curvature of the foliation in
the centimetre-scale grains of the marginal gabbro in-
dicates n11 and n appears to have systematically
increased inward so that the ®ne-grained epidotic
mylonite along the counter¯ow boundary itself
deformed with n115. This counter¯ow boundary is
only a few tens of metres away from that illustrated in
Fig. 9(b) in the same pod of gabbro in the Kola penin-
sula of Russia. These two counter¯ow boundaries are
both symmetric and a�ect similar widths in the same
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isotropic gabbro. However, they are not parallel and
while the counter¯ow in Fig. 9(b) clearly ®ts a con-
stant n � 3 displacement curve (Fig. 2), that in Fig.
12(c) just as clearly ®ts the tangential curve for n
increasing from 1 to 15 (Fig. 8b). The obvious in-
terpretation is that the counter¯ow boundary with an
inward decrease in grain size but not mineralogy (Fig.
9b) was short-lived and developed while conditions
changed little. In contrast, the counter¯ow boundary
in which marginal amphibolite gives way inward to
greenschist facies minerals (Fig. 12c) was compara-
tively long-lived and the n-value rose as conditions
changed during active shear. The coupled boundary
shears in Fig. 12(c) probably narrowed with time as a
Means type II shear zone.

6. Discussion

6.1. n-curves are robust

Suitably scaled or distorted, one or other of the
theoretical curves in Figs. 2 8(a) ®t the curvature of
planar fabrics distorted along parts of natural bound-
ary shears in a variety of rock types and environments
on a wide range of scales (Figs. 9±12). The method
introduced here therefore appears to be remarkably
robust for limiting n-values of adjoining rock masses
when they sheared. This is because the displacement
pro®les (Figs. 2±8a) remain distinctive whatever the
width, maximum displacement and orientation of pre-
existing passive markers. Furthermore, these curves
remain distinctive through all combinations of simple
and pure shears and/or volume changes that are
smooth across the counter¯ow boundary and constant
along it. It is possible to strain the individual n � 1±15
curves in Fig. 2 to resemble one another by applying
either particular simple shears along the width axis, or
particular pure shears along the line joining where the
curves meet the displacement and width axes. As
neither of these special types of strain are likely to
a�ect natural counter¯ow boundaries, the curves in
Figs. 2 or 8(a) remain recognisable through most likely
natural deformations. The geometric ®ts demonstrated
in Figs. 9±12 therefore measure the stress sensitivity of
the strain rate of the rocks when they sheared what-
ever other deformations occurred. The constraints of
the measured shear being only simple and isochoric
may be dropped from the initial assumptions.

Many of the ®ts illustrated on Figs. 9±12 are only
local. The markers are local in Fig. 11 and the ®ts are
local in Figs. 9(d), 10(b) and (c) and 12(a). The
remaining initial assumptions, of steady continuous
homogeneous deformation, are inappropriate for these
cases. Deformation was clearly not homogeneous

along these zones and it is unlikely that they were
either steady or continuous.

6.2. E�ective steadiness and continuity of accumulated
shear

The generality of the empirical ®ts between theoreti-
cal ®nite displacement curves for steady ¯ow of pseu-
doplastic ¯uids (Fig. 2) and the curvature of natural
markers along the natural counter¯ow boundaries in
Figs. 9(a±c), 10(a), 12(b) and (c) has signi®cant impli-
cations. Whether or not the ¯ows occurred in irregular
episodes of di�erent length because stresses varied with
time, the ¯ows responsible for these cases appear to
have accumulated steadily and continuously; they can
therefore be treated as such on the scale of the ana-
lyses. This is attributed to the analyses being on scales
many orders of magnitude larger than the scales on
which the deformation mechanisms occurred.

6.3. General deformations

Displacement curves along the main body of natural
counter¯ow boundaries show a conspicuous tendency
to be described by Eq. (5). However, as already
emphasised, departures from homogeneous strains
are inevitable near the ends of counter¯ow boundaries
as a result of ¯ow maintaining continuity during
change in velocity (Fig. 12a). The symptoms of such
complications are either curvature of the counter-
¯ow boundary itself, and/or contours of displacement
or strain that narrow or widen in planar sections,
often asymmetrically. Contours of displacement and
strain are likely to diverge toward boundary conditions
that retard ¯ow and constrict the ¯uid (McCoss,
1986). They are likely to converge away from bound-
ary conditions that accelerate ¯ow and ¯atten the
¯uid (McCoss, 1986). The shapes of contours of dis-
placement or strain thus provide a simple indication of
how the style of strain varies along counter¯ow
boundaries.

6.4. Alternatives to power law shears?

It is still signi®cant if, after any combination of scal-
ing, rotation or distortion, none of the theoretical
curves on Figs. 2 or 8(a) ®t the curvature of markers
sheared along natural boundary shears. Perhaps the
counter¯ow boundary or displacement trajectories
were curved or oblique to the pro®le so that shear was
not homogeneous parallel to the margins. Perhaps the
markers were strain active (Ramsay and Huber, 1983)
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and some counter¯ows have certainly been sub-
sequently distorted (unpublished). There may also be
(large and fast?) boundary shears in which displace-
ment gradients ®t models other than power law.

6.5. Variations in n

The stress histories of old basement rocks can be
expected to have changed as their boundary conditions
changed in response to the opening and closing of sur-
rounding oceans (e.g. Munier and Talbot, 1993).
While the rocks were still su�ciently deep and warm
to be ductile, shear can be expected to increasingly
localise in new counter¯ow boundaries with di�erent
orientations as the n-value decreased as P±T con-
ditions changed. Nevertheless, n-values can be expected
to be constant in individual examples of successive
generations of new counter¯ow boundariesÐas was
found for most of the natural examples analysed here.

By contrast, plutons (e.g. Gapais, 1989) might cool
su�ciently rapidly that their n-values could increase
without signi®cant changes in boundary conditions. If
so, strain can be expected to increasingly localise to
the same continuously active counter¯ow boundaryÐ
as was found in Fig. 12(c) here.

6.6. The physical meaning of n

While discussing the e�ects that control the rates at
which rocks strain, Means (1990, pp. 968±969) wrote
``At lower strain rates, the temperature weakening
e�ect dominates the pressure strengthening e�ect and
so, . . . in general, increases in con®ning pressure or
temperature promote ductility . . . . The relation of
temperature to steady state ¯ow stress and strain rate
is commonly found to ®t a ¯ow law of the form of'':

_e � Asn exp�ÿQ=RT � �6�

which is more explicit about the constant in Eq. (1c)
(e.g. Nye, 1957).

In Eq. (6), A is a constant characteristic of the sys-
tem considered, Q is the activation energy of a steady
process, R is the gas constant, T the absolute tempera-
ture, and n is the rheological parameter that expresses
the stress sensitivity of the strain rate.

In mineralogy, the system considered in Eq. (6)
might be a single mineral phase and Q might refer to
speci®c sub-microscopic deformation mechanisms (e.g.
Birger, 1998). In petrology and rock mechanics, the
system might be a single rock type and Q might refer
to steady creeping ¯ow; here the systems considered
have been counter¯ow boundaries in individual rock
types or compound rock units and Q is that of the
counter¯ow.

Notice that the various parameters on the right

hand side of Eq. (6) could vary independently
(although A is related to T ) so that, e.g. n can be inde-
pendent of T. In polymers used as analogues of rocks
in dynamically scaled deformation models, n can
remain constant over a range of temperatures
(Hailermariam and Mulugeta, 1998). In the rock mech-
anics literature, n is expected to vary with grain size so
that n � 1 for ultra-®ne rocks and n � 2:5±4:5 for
coarser-grained rocks (e.g. Ranalli, 1995). This appears
to be the reverse of what is seen in Fig. 12(c) where
other variables may have been more signi®cant.

The analyses of Figs. 9±12 found that crystalline
metamorphic rocks appear to shear with n � 1 when
melting (Fig. 12a), with n � 1:9±3 at amphibolite facies
(Figs. 9b, 10c and 12b) and n15 in metamorphic
facies of lower grade (Figs. 9c and d and 11b). The
slaty siltstone sheared with n � 3 and the sandstones
with 1.9 at low metamorphic grade (Figs. 9a and 11a)
and unmetamorphosed sediments can be interpreted as
having sheared with n12:9 (Fig. 11a). In general, the
stress sensitivity of the strain rate of rocks and rock
masses appears to increase with decrease in both P
and T.

7. Summary

Empirical ®ts exist between theoretical displacement
curves for steady ¯ows of pseudoplastic ¯uids along
boundary shears and the displacement gradients in
natural deformation zones (and `drag folds' along
faults). These ®ts are, in e�ect, simple measurements
of the stress sensitivity of the strain rate of speci®c
rock types deformed over particular time intervals in
conditions of P±T±_e-¯uid that can be constrained by
other methods. The relative notions of penetrative
strains and competence in ductile rocks can now be
replaced by routine assignment of n-values.

The concept of counter¯ow boundaries potentially
allows resolution of many problems previously associ-
ated with shear zones. Thus constraining absolute ages
of pre-, syn-, and/or post-shear markers would also
limit the relative strain rates for rock masses for which
the n-value can be measured. Whether strains that take
years or less in particular rocks deformed in labora-
tories and millions of years in nature occur by di�erent
processes (Means, 1990) can now be checked.
Structural and tectonic modellers currently use small
scale laboratory measurements but in future could use
®eld readings of n-values of particular rocks on appro-
priate scales in relevant P±T environments.
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